
Synthesis and
Satisfiability Modulo Theory Solvers

Viktor Kuncak
EPFL

Laboratory for Automated Reasoning and Analysis

http://lara.epfl.ch http://leon.epfl.ch
http://cvc4.cs.nyu.edu/web/

http://lara.epfl.ch/
http://leon.epfl.ch/
http://cvc4.cs.nyu.edu/web/

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

requirement
formalization

conventional

compilation

implementation (program): p

specification (constraint): C

How to automatically verify that an
implementation meets a spec?

How to automatically transform
a spec into an implementation?

Agenda:
Your wish is my command

Command

Given a list of numbers, make this list sorted

8900

6000

24140

2900

2900

6000

8900

24140

Sorting Specification as a Program

8900 > 6000 2900 < 6000

6000 < 8900

8900 < 24140

def sort_spec(input : List, output : List) : Boolean =
content(output)==content(input) && isSorted(output)

input output

Specification (for us) is a program that checks, for a
given input, whether the given output is acceptable

wish

8900

6000

24140

2900

2900

6000

8900

24140

Specification vs Implementation
def C(i : List, o : List) : Boolean =
content(o)==content(i) && isSorted(o)

input output

implementation

specification

true / false

def p(i : List) : List =
sort i using a sorting algorithm

U p  C

more behaviors

fewer behaviors

constraint on the output

function that computes the output
(equality constraint on output)

http://leon.epfl.ch system for Scala
Scala: invented at EPFL by Prof. Martin Odersky http://scala-lang.org/
- hundreds of thousands of Scala programmers, used in:
Twitter, Foursquare, Coursera , The Guardian, New York Times, Huffington Post, UBS , LinkedIn ,
Meetup ,Verizon , Intel, …

Typesafe Inc. supports Scala commercially
EPFL: industrial advisory board, courses, open source development

Chisel: “…an open-source hardware construction language developed at UC Berkeley that
supports advanced hardware design using highly parameterized generators and layered
domain-specific hardware languages.” – other Scala DSLs: e.g. OptiML

Apache Spark: “an open-source cluster computing framework with in-memory processing
to speed analytic applications up to 100 times faster compared to technologies on the
market today. Developed in the AMPLab at UC Berkeley, Apache Spark can help reduce
data interaction complexity, increase processing speed and enhance mission-critical
applications with deep intelligence.”

“…IBM is making a major commitment to the future of Apache Spark, with a
series of initiatives announced today. IBM will offer Apache Spark as a service
on Bluemix; commit 3,500 researchers to work on Spark-related projects; donate
IBM SystemML to the Spark ecosystem; and offer courses to train 1 million data
scientists and engineers to use Spark.”

http://leon.epfl.ch/
http://scala-lang.org/
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Foursquare_(service)
https://en.wikipedia.org/wiki/Coursera
https://en.wikipedia.org/wiki/The_Guardian
https://en.wikipedia.org/wiki/New_York_Times
https://en.wikipedia.org/wiki/Huffington_Post
https://en.wikipedia.org/wiki/UBS
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/Meetup_(website)
https://en.wikipedia.org/wiki/Verizon
http://www.informationweek.com/big-data/big-data-analytics/spark-promoter-databricks-should-let-software-shine/a/d-id/1319539?itc=edit_in_body_cross
http://www.informationweek.com/software/enterprise-applications/ibm-bluemix-welcomes-microsofts-net/d/d-id/1320357

DEMO

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

b) Verify whether program
always meets the spec:

i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p  C

repair

http://leon.epfl.ch

http://leon.epfl.ch/

Approaches and Their Guarantees

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

both specification C and program p are given:

only specification C is given:

b) Verify that program
always meets spec:
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p  C

run-time compile-time

Synthesizing Sort in Leon System

Ivan Kuraj Philippe SuterEtienne Kneuss

OOPSLA 2013:
Synthesis Modulo Recursive Functions

http://leon.epfl.ch

http://leon.epfl.ch/

A
D

T
In

d
u

ct
io

n

def rec(in: List, v: Int): List = in match {
case Cons(h,t) =>
val r = rec(t,v)

case Nil =>

} ensuring { content(_) == content(in1) -- Set(v) }
rec(in1, v)

Recursion Schemas + STE in Action
def delete(in1: List, v: Int) = choose {
(out: List) => content(out) == content(in1) -- Set(v)

}

EQ
 S

p
lit

if (h == v) {

} else {

}

def delete(in1: List, v: Int) = {

}

CEGIS

CEGIS

CEGIS

r

Cons(h, r)

Nil

Decomposition Example: Case Split

Case Split

⟨ 𝑃1 | 𝑇1⟩ ⟨ 𝑃2 | 𝑇2⟩

⟨𝑃1 ∨ 𝑃2| if(𝑃1) 𝑇1 else 𝑇2⟩

Case Split

⟦ 𝑎 ⟨𝜑1 ∨ 𝜑2⟩ 𝑥 ⟧

⟦ 𝑎 ⟨𝜑1⟩ 𝑥 ⟧ ⟦ 𝑎 ⟨𝜑2⟩ 𝑥 ⟧

Symbolic Term Exploration (STE)

Symbolic search over many expressions of bounded size

T(𝑏) = if (𝑏0) 𝑎0
elseif (𝑏1) Nil
elseif (𝑏2) Cons 0, Nil
elseif (𝑏3) …

SMT solver searches exponentially many expressions given by
polynomially many Boolean variables

Concrete execution prunes search space

Leon’s verifier validates candidate expressions
– using again SMT solvers

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
choose((h: Int, m: Int, s: Int) ⇒ (

h * 3600 + m * 60 + s == totalSeconds
&& h ≥ 0
&& m ≥ 0 && m < 60
&& s ≥ 0 && s < 60))

Building Block: Complete Synthesis

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
val t1 = totalSeconds div 3600
val t2 = totalSeconds -3600 * t1
val t3 = t2 div 60
val t4 = totalSeconds - 3600 * t1 - 60 * t3
(t1, t3, t4)

spec in integer
linear arithmetic

PLDI'10
CACM'12

synthesis
procedure

Kuncak, Mayer, Piskac, Suter

Implementation

V1) Quantifier elimination procedure for Presburger arith.
– optimization for some important cases

– inefficient in general

V2) Automata-based procedure for int. arithmetic with
bitwise operations (Hamza, Jobstmann, K., FMCAD’10)

– handles larger subset

– bad at e.g. multiplication by large constants - we do not
know good general techniques for sequential circuits

V3) Inside an SMT solver: Andrew Reynolds, Morgan
Deters, Cesare Tinelli, Clark Barrett, K. – CAV’15

 focus today

Synthesis Problem for an SMT Solver

• Synthesis Problem : f.x.P(f,x)

• Most existing approaches for synthesis
• Rely on specialized solver that makes subcalls to an SMT Solver

• Goal: approach implemented entirely inside SMT solver

There exists a function f such that for all x, P(f,x)

SMT Solver + Quantified Formulas

SMT solver consists of:
• Ground solver maintains a set of ground (variable-free) constraints
• Quantifiers Module maintains a set of quantified formulas:  x.P(x)

Using SMT solvers: game-changer in automated software verification

Increasingly relevant in industry:

• symbolic execution of systems code, microcode, word-level reasoning

• Anders Franzén, Alessandro Cimatti, Alexander Nadel, Roberto Sebastiani,
Jonathan Shalev: Applying SMT in symbolic execution of
microcode. FMCAD 2010: 121-128 – Best Paper Award

SAT
Solver

Decision
Procedure

for T

Ground solver

DPLL(T)
Quantifiers

Module

x.P(x)

http://dblp.uni-trier.de/db/conf/fmcad/fmcad2010.html#FranzenCNSS10

SMT Solver + Quantified Formulas

• Goal : add instances of axioms until ground solver can answer “unsat”

SAT
Solver

Decision
Procedure

for Ti

Ground solver

DPLL(T)

P(a),P(b),P(c),…

Quantifiers
Module

instances

x.P(x)

unsat?

Running Example : Max of Two Integers

 f.xy.(f(x,y)≥x  f(x,y)≥y 

(f(x,y)=x  f(x,y)=y))

• Specifies that f computes the maximum of integers x and y

• A solution:

f := lxy.ite(x≥y,x,y)

Approach: Refutation-Based Synthesis

• What if we negate the synthesis conjecture?

• If we are in a satisfaction-complete theory T (e.g. LIA, BV):
• F is T-satisfiable if and only if F is T-unsatisfiable

 Will suffice for us to show the above formula is

  f. x.P(f,x)

unsat

Challenge: Second-Order Quantification

• Challenge: negation introduces universal  over function f
• No SMT solvers directly support second-order quantification

f. x.P(f,x)

  f. x.P(f,x)

Challenge: Second-Order Quantification

• Challenge: negation introduces universal  over function f
• No SMT solvers directly support second-order quantification

• However, we can avoid this quantification using two approaches:
1. When property P is single invocation for f  focus now

2. When f is given syntactic restrictions

f. x.P(f,x)

  f. x.P(f,x)

Single Invocation Properties

f.  xy.(f(x,y)<x  f(x,y)<y 

(f(x,y)≠x  f(x,y)≠y))

Single Invocation Properties

• Single invocation properties
• Are properties such that:

• All occurrences of f are of a particular form, e.g. f(x,y) above

• Are a common class of properties useful for:
• Software Synthesis (post-conditions describing the result of a function)

• Given solution, it can be checked without replicating solution

NOT single invocation: “f is commutative”

f.  xy.(f(x,y)<x  f(x,y)<y 

(f(x,y)≠x  f(x,y)≠y))

Single Invocation Properties

• Occurrences of f(x,y) are replaced with integer variable g

• Resulting formula is equisatisfiable, and first-order

f.  xy.(f(x,y)<x  f(x,y)<y 

(f(x,y)≠x  f(x,y)≠y))

 xy.g.(g<x  g<y 

(g≠x  g≠y))

Push quantification inwards

Single Invocation Properties

f.  xy.(f(x,y)<x  f(x,y)<y 

(f(x,y)≠x  f(x,y)≠y))

 xy.g.(g<x  g<y 

(g≠x  g≠y))

g.(g<a  g<b (g≠a  g≠b))

Skolemize, for fresh a and b

Solving Max Example

g.(g<a  g<b (g≠a  g≠b))

Ground
solver

Quantifiers
Module

Solving Max Example

g.isMax(g,a,b)

Ground
solver

Quantifiers
Module

Solving Max Example

Quantifiers
Module

Ground
solver

instances
a/g, b/g

isMax(a,a,b)
isMax(b,a,b)

g.isMax(g,a,b)

Solving Max Example

Quantifiers
Module

Ground
solver

a<b 

b<a simplify
g.isMax(g,a,b)

Solving Max Example

Quantifiers
Module

unsat

Ground
solver

a<b 

b<a 

 g.isMax(g,a,b) is unsatisfable
by instances a/g, b/g,

implies original synthesis conjecture has a solution

g.isMax(g,a,b)

Solving Max Example

Quantifiers
Module

unsat

Ground
solver

 Extract solution from unsatisfiable core of instantiations a/g, b/g

f:= lxy.ite(isMax(a,a,b), a, b)[x/a][y/b]

g.isMax(g,a,b)

 f. xy.isMax(f(x,y),x,y)

isMax(a,a,b)
isMax(b,a,b)

Solving Max Example

Quantifiers
Module

unsat

Ground
solver

f:= lxy. ite(x≥y,x,y)

 f. xy.isMax(f(x,y),x,y)

g.isMax(g,a,b)

 Desired function, after simplification

isMax(a,a,b)
isMax(b,a,b)

How do we Choose Relevant Instances?

Quantifiers
Module

Ground
solver

...

?

g.isMax(g,a,b)

Counterexample-Guided Quantifier Instantiation

Quantifiers
Module

Ground
solver

...

solution

Candidate programs

...

Counterexamples

• Instances chosen using counterexample-guided quantifier instantiation
 Follows counterexample-guided inductive synthesis (CEGIS) approach

In work under submission, we provide framework where such CEGIS choices are complete for
linear arithmetic

Much better scalability than quantifier elimination approaches

Quantifiers Module of CVC4

Specialized technique for quantified arithmetic

Ground
Solver

Quantifiers Module

…

G,…

E-matching

Model Based Enumerative

Arithmetic Conjecture Gen

Rewrite Rules Function Defs

Conflict-Based

sat
unsat

sat
 sat

instances, lemmas

arXiv:1510.02642

An Instantiation-Based Approach for Solving Quantified Linear Arithmetic

Andrew Reynolds, Tim King, Viktor Kuncak

http://arxiv.org/abs/1510.02642
http://arxiv.org/find/cs/1/au:+Reynolds_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+King_T/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Kuncak_V/0/1/0/all/0/1

CVC4 in Sygus Competition 2015

Our technique Won General and LIA tracks (= 2/3 tracks) in competition

In LIA track, solved 70/73 benchmarks, 60 of these in <1 second
• Nearest competitor AlchemistCSDT solved 47/73 in a timeout of 1 hour

https://excape.cis.upenn.edu/

NSF Expedition on Computer Augmented Programm Engineering (ExCAPE)
led by Rajeev Alur, involves UPenn, MIT, Berkeley, Rice, Illinois, Maryland, UCLA, Michigan

organizes a competition of software synthesis tools

https://excape.cis.upenn.edu/

Max example : Sygus Comp 2015

• Outperforms existing approaches by an order of magnitude or more

Our approach is efficient for synthesizing non-recursive functions that
are defined by cases

Implementation available in the main branch of CVC4 SMT solver:

http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Conclusions: Synthesis and SMT Solvers

Leon system for verifying and synthesizing Scala programs

http://leon.epfl.ch

SMT solvers are essential for synthesis and verification

Given support for quantifiers, SMT solver can perform
synthesis on its own!

Key challenge: efficient techniques to instantiate quantifiers
• CVC4 solution is state of the art for linear arithmetic: complete and fast

arXiv:1510.02642

An Instantiation-Based Approach for Solving Quantified Linear Arithmetic

Andrew Reynolds, Tim King, Viktor Kuncak

http://leon.epfl.ch/
http://arxiv.org/abs/1510.02642
http://arxiv.org/find/cs/1/au:+Reynolds_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+King_T/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Kuncak_V/0/1/0/all/0/1

